4 research outputs found

    Emergence of complexity in hierarchically organized chiral particles

    Get PDF
    The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties

    Solvent Effect on the Regulation of Urea Hydrolysis Reactions by Copper Complexes

    No full text
    Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic self-aggregating supramolecular complexes that generate monomeric species in different reaction rates depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl (CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model reaction. It was evident that the dimeric species were inactive and that by increasing the water concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric structures. This behavior was more pronounced when methanol/water mixtures were employed due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled in the presence of water, indicating their possible use as water-sensors in organic solvents
    corecore